Qualitative Research in Nursing Practice

Qualitative Research in Nursing Practice

To prepare:

Consider your readings about and understanding of quantitative and qualitative research. If you had to choose, which type of research (quantitative or qualitative) do you think is more rigorous and why? Do you think it is useful to make such generalizations and comparisons?

Locate an article describing a qualitative research study related to a health care topic.

Formulate a research question to address the problem and that would lead you to employ correlational statistics.

With information from the Learning Resources in mind, critically analyze your selected study. Ask yourself: How rigorous was the study in terms of the researchers’ efforts, the data collected, and the conclusions drawn? What might the researchers have done to improve the rigor?

Post 1-2 pages cohesive response that addresses the following:

1. Do you think there is one type of research (quantitative or qualitative) that is inherently more rigorous than the other? If so, identify which one and why. If not, discuss your reasoning.

2. Post a brief summary of your research article analysis and the correct APA citation for the article.

3. Outline how the study’s qualitative data collection and analysis did, or did not, promote rigor, provide scientific or systematic scaffolding, and/or generate a more thorough analysis of the research topic.

References

Required Media

Laureate Education, Inc. (Executive Producer). (2011). Research methods for evidence-based practice: Qualitative research. Baltimore, MD: Author.

Required Readings

Gray, J.R., Grove, S.K., & Sutherland, S. (2017). Burns and Grove’s the practice of nursing research: Appraisal, synthesis, and generation of evidence (8th ed.). St. Louis, MO: Saunders Elsevier.

Chapter 12, “Qualitative Research Methods” (pp. 251-274)

Articles

Bradley, E. H., Curry, L. A., & Devers, K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 42(4), 1758–1772. doi:10.1111/j.1475-6773.2006.00684.x

Note: You will access this article from the Walden Library databases.

Smith, J., & Firth, J. (2011). Qualitative data analysis: The framework approach. Nurse Researcher, 18(2), 52–62.

Note: You will access this article from the Walden Library databases.

Qualitative Data Analysis for Health Services Research: Developing Taxonomy, Themes, and Theory Elizabeth H. Bradley, Leslie A. Curry, and Kelly J. Devers

[Correction added after online publication February 2, 2007: on the first page, an author’s name was misspelled as Kelly J. Devens. The correct spelling is Kelly J. Devers.]

Objective. To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. Data Sources and Design. We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research. Principle Findings. We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, per- spective, participant characteristics, and setting codes) define a structure that is appro- priate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses. Conclusions. Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater under- standing of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative re- searchers from a wide range of disciplines.

Key Words. Qualitative methods, taxonomy, theme development, theory generation

Qualitative research is increasingly common in health services research (Shortell 1999; Sofaer 1999). Qualitative studies have been used, for example, to study culture change (Marshall et al. 2003; Craigie and Hobbs 2004), physician–patient relationships and primary care (Flocke, Miller, and Crabtree 2002; Gallagher et al. 2003; Sobo, Seid, and Reyes Gelhard 2006), diffusion of innovations and

r Health Research and Educational Trust DOI: 10.1111/j.1475-6773.2006.00684.x

1758

 

 

quality improvement strategies (Bradley et al. 2005; Crosson et al. 2005), novel interventions to improve care (Koops and Lindley 2002; Stapleton, Kirkham, and Thomas 2002; Dy et al. 2005), and managed care market trends (Scanlon et al. 2001; Devers et al. 2003). Despite substantial methodological papers and seminal texts (Glaser and Strauss 1967; Miles and Huberman 1994; Mays and Pope 1995; Strauss and Corbin 1998; Crabtree and Miller 1999; Devers 1999; Patton 1999; Devers and Frankel 2000; Giacomini and Cook 2000; Morse and Richards 2002) about designing qualitative projects and collecting qualitative data, less attention has been paid to the data analysis aspects of qualitative re- search. The purpose of this paper is to offer practical strategies for the analysis of qualitative data that may be generated from in-depth interviewing, focus groups, field observations, primary or secondary qualitative data (e.g., diaries, meeting minutes, annual reports), or a combination of these data collection approaches.

WHY QUALITATIVE RESEARCH?

Qualitative research is well suited for understanding phenomena within their context, uncovering links among concepts and behaviors, and generating and refining theory (Glaser and Strauss 1967; Miles and Huberman 1994; Crabtree and Miller 1999; Morse 1999; Ragin 1999; Sofaer 1999; Patton 2002; Camp- bell and Gregor 2004; Quinn 2005). Distinct from qualitative work, quanti- tative research seeks to count occurrences, establish statistical links among variables, and generalize findings to the population from which the sample was drawn. Although qualitative and quantitative methods have historically been viewed as mutually exclusive, rigid distinctions are increasingly recognized as inappropriate and counterproductive (Ragin 1999; Sofaer 1999; Creswell 2003; Skocpol 2003). Mixed methods approaches (Creswell 2003) may in- clude both methods employed simultaneously or sequentially, as appropriate.

TYPES OF QUALITATIVE ANALYSIS

There is immense diversity in the disciplinary and theoretical orientation, methods, and types of findings generated by qualitative research (Yardley

Address correspondence to Elizabeth H. Bradley, Ph.D., Professor, Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520- 8034. Leslie A. Curry, Ph.D., Associate Professor of Medicine, is with the University of Con- necticut School of Medicine, Farmington, CT. Kelly J. Devers, Ph.D., Associate Professor, is with the Departments of Health Administration and Family Medicine, Virginia Commonwealth Uni- versity, Richmond, VA.

Qualitative Data Analysis for Health Services Research 1759

 

 

2000). The many traditions of qualitative research include, but are not limited to, cultural ethnography (Agar 1996; Quinn 2005), institutional ethnography (Campbell and Gregor 2004), comparative historical analyses (Skocpol 2003), case studies (Yin 1994), focus groups (Krueger and Casey 2000), in-depth interviews (Glaser and Strauss 1967; McCracken 1988; Patton 2002; Quinn 2005), participant and nonparticipant observations (Spradley 1980), and hy- brid approaches that include parts or wholes of multiple study types. Con- sistent with the pluralism in theoretical traditions, methods, and study designs, many experts (Feldman 1995; Greenhalgh and Taylor 1997; Sofaer 1999; Yardley 2000; Morse and Richards 2002) have argued that there cannot and should not be a uniform approach to qualitative methods. Nevertheless, some approaches to qualitative data analysis are useful in health services research. In this paper, we focus on strategies for analysis of qualitative data that are es- pecially applicable in the generation of taxonomy, themes, and theory (Table 1). Taxonomy is a formal system for classifying multifaceted, complex phe- nomena (Patton 2002) according to a set of common conceptual domains and dimensions. Taxonomies promote increased clarity in defining and hence comparing diverse, complex interventions (Sofaer 1999), which are common in health policy and management. Themes are recurrent unifying concepts or statements (Boyatzis 1998) about the subject of inquiry. Themes are funda- mental concepts (Ryan and Bernard 2003) that characterize specific experi- ences of individual participants by the more general insights that are apparent from the whole of the data. Theory is a set of general, modifiable propositions that help explain, predict, and interpret events or phenomena of interest (Dubin 1969; Patton 2002). Theory is important for understanding potential causal links and confounding variables, for understanding the context within which a phenomenon occurs, and for providing a potential framework for guiding subsequent empirical research.

CONDUCTING THE ANALYSIS Overview

There is no singularly appropriate way to conduct qualitative data analysis, although there is general agreement that analysis is an ongoing, iterative process that begins in the early stages of data collection and continues throughout the study. Qualitative data analysis, wherein one is making sense of the data collected, may seem particularly mysterious (Campbell and Gregor 2004). The following steps represent a systematic approach that allows for

1760 HSR: Health Services Research 42:4 (August 2007)

 

 

open discovery of emergent concepts with a focus on generating taxonomy, themes, or theory.

Reading for Overall Understanding

Immersion in the data to comprehend its meaning in its entirety (Crabtree and Miller 1999; Pope, Ziebland, and Mays 2000) is an important first step in the analysis. Reviewing data without coding helps identify emergent themes without losing the connections between concepts and their context.

Coding Qualitative Data

Once the data have been reviewed and there is a general understanding of the scope and contexts of the key experiences under study, coding provides the analyst with a formal system to organize the data, uncovering and document- ing additional links within and between concepts and experiences described in the data. Codes are tags (Miles and Huberman 1994) or labels, which are assigned to whole documents or segments of documents (i.e., paragraphs, sentences, or words) to help catalogue key concepts while preserving the context in which these concepts occur.

The coding process includes development, finalization, and application of the code structure. Some experts (Morse 1994; Morse and Richards 2002; Janesick 2003) argue that a single researcher conducting all the coding is both sufficient and preferred. This is particularly true in studies where being em- bedded in ongoing relationships with research participants is critical for the quality of the data collected. In such cases, the researcher is the instrument;

Table 1: Selected Types of Results from Qualitative Data Analysis

Results Definition Application/Purpose

Taxonomy Formal system for classifying multifaceted, complex phenomena according to a set of common conceptual domains and dimensions

Increase clarity in defining and comparing complex phenomena

Themes Recurrent unifying concepts or statements about the subject of inquiry

Characterize experiences of individual participants by general insights from the whole of the data

Theory A set of general propositions that help explain, predict, and interpret events or phenomena of interest

Identify possible levers for affecting specific outcomes; guide further examination of explicit hypotheses derived from theory

Qualitative Data Analysis for Health Services Research 1761

 

 

data collection and analysis are so intertwined that they should be integrated in a single person who is the ‘‘choreographer’’ ( Janesick 2003) of his/her own ‘‘dance.’’ Such an analysis may not be possible to be repeated by others who have differing traditions and paradigms; therefore, disclosure (Gubrium and Holstein 1997) of the researcher’s biases and philosophical approaches is im- portant. In contrast, other experts recommend that the coding process involve a team of researchers with differing backgrounds (Denzin 1978; Mays and Pope 1995; Patton 1999; Pope, Ziebland, and Mays 2000) to improve the breadth and depth of the analysis and subsequent findings. Cross-training is important in the use of such teams.

Developing the Code Structure

The development of the code structure is an iterative and lengthy process, which begins in the data collection phase. There is substantial diversity in how to develop the code structure. This debate (Glaser 1992; Heath and Cowley 2004) centers on whether coding should be more inductive or more deductive. Regardless of approach, a well-crafted, clear, and comprehensive code struc- ture promotes the quality of subsequent analysis (Miles and Huberman 1994).

Grounded Theory Approach to Developing Code Structure

For grounded theorists, the recommended approach to developing a set of codes is purely inductive. This approach limits researchers from erroneously ‘‘forcing’’ a preconceived result (Glaser 1992). Data are reviewed line by line in detail and as a concept becomes apparent, a code is assigned. Upon further review of data, the analyst continues to assign codes that reflect the concepts that emerge, highlighting and coding lines, paragraphs, or segments that il- lustrate the chosen concept. As more data are reviewed, the specifications of codes are developed and refined to fit the data. To ascertain whether a code is appropriately assigned, the analyst compares text segments to segments that have been previously assigned the same code and decides whether they reflect the same concept. Using this ‘‘constant comparison’’ method (Glaser and Strauss 1967), the researchers refine dimensions of existing codes and identify new codes. Through this process, the code structure evolves inductively, re- flecting ‘‘the ground,’’ i.e., the experiences of participants.

More Deductive Approaches to Developing Code Structure

Some qualitative research experts (Miles and Huberman 1994) describe a more deductive approach, which starts with an organizing framework for the

1762 HSR: Health Services Research 42:4 (August 2007)

 

 

codes. In this approach, the initial step defines a structure of initial codes before line-by-line review of the data. Preliminary codes can help researchers integrate concepts already well known in the extant literature. For example, a deductive approach of health service use might begin with predetermined codes for predisposing, enabling, and need factors based on the behavioral model (Andersen 1995). Great care must be taken to avoid forcing data into these categories because a code exists for them; however such a ‘‘start list’’ (Miles and Huberman 1994) does allow new inquiries to benefit from and build on previous insights in the field.

An Integrated Approach to Developing Code Structure

An integrated approach employs both inductive (ground-up) development of codes as well as a deductive organizing framework for code types (start list). Previous researchers have identified various code types (Lofland 1971; Lin- coln and Guba 1985; Strauss and Corbin 1990; Miles and Huberman 1994); however, five code types (Table 2) are helpful in generating taxonomy, themes, and theory, all of which have practical relevance for health services research. These code types are (1) conceptual codes and subcodes identifying key concept domains and essential dimensions of these concept domains, (2) re- lationship codes identifying links between other concepts coded with conceptual

Table 2: Code Types and Applications

Code Types Characterization Application/Purpose

Conceptual codes/subcodes Key conceptual domains and essential conceptual dimensions of the domains

Developing taxonomies; useful in themes and theory

Relationship codes Links among conceptual codes/subcodes

Generating themes and theory

Participant perspective Directional views (positive, negative, or indifferent) of participants

Generating themes and theory

Participant characteristics Characteristics that identify participants, such as age, gender, insurance type, socioeconomic status, etc.

Comparing key concepts across types of participants

Setting codes Characteristics that identify settings, such as intervention versus nonintervention group, fee-for-service versus prepaid insurance, etc.

Comparing key concepts across types of settings

Qualitative Data Analysis for Health Services Research 1763

 

 

codes, (3) participant perspective codes, which identify if the participant is posi- tive, negative, or indifferent about a particular experience or part of an ex- perience, (4) participant characteristic codes, and (5) setting codes.

Finalizing and Applying the Code Structure

The codes and code structure can be considered finalized at the point of theoretical saturation (Glaser and Strauss 1967; Glaser 1992; Patton 2002). This is the point at which no new concepts emerge from reviewing of suc- cessive data from a theoretically sensitive sample of participants, i.e., a sample that is diverse in pertinent characteristics and experiences. Theoretical sat- uration will take longer to accomplish for more multifaceted areas of inquiry with greater diversity among participants. If, during analysis, a conceptual gap is identified, the researcher should expand the sample to continue data col- lection to clarify and refine emerging concepts and codes. For instance, if an observation or interview elicits information about a concept that has not been heard or that contradicts previous understandings, the researchers should ex- pand the sample to include participants and experiences to understand this new concept more fully. This use of the codes to guide data collection is known as theoretical sampling and is central to conducting qualitative research.

Applying the Finalized Code Structure

The application of the finalized code structure to the data is an important step of analysis. One approach to applying the finalized code structure to the data is to have two to three members of the research team re-review all the data, applying independently the codes from the finalized code structure. Then, the team meets in a group to review discrepancies, resolving differences by in- depth discussion and negotiated consensus. The result is a single, agreed upon application of the final codes to all parts of the data. This approach is rea- sonable and frequently used in the published literature. Another approach to applying the finalized code structure is to establish the reliability of multiple coders from the research team with a selected group of data. Once coders have been established to be reliable with one another, one of the coders completes the remainder of the coding independently. This approach can be more time efficient than the approach that requires the multiple coders to recode all data with the final code structure and then resolve disagreement by joint consensus. Intercoder reliability (Miles and Huberman 1994) can be evaluated by se- lecting new data (for instance, two to three transcripts that were not analyzed as part of the code development phase before theoretical saturation) and

1764 HSR: Health Services Research 42:4 (August 2007)

 

 

having two researchers code these data, using the finalized code structure. The two researchers code the transcripts independently and compare the agree- ment on coding used. One calculates the percentage of all segments coded, which are coded with the same codes, and some experts (Miles and Huberman 1994) have proposed 80 percent agreement as a rule of thumb for reasonable reliability.

The approach in each of the steps of qualitative data analysis reflects a balance of differing views among researchers. Formality, including quantify- ing intercoder reliability, may improve the ability of those less trained in qualitative methods to understand and value evidence generated from quali- tative studies. However, overly mechanistic approaches or reliance on inex- perienced qualitative analysts may dampen the insights from qualitative research (Morgan 1997). Formal rules and processes should not replace an- alytic thought itself. In any project, if the codes are not conceptually rich and are oversimplified in their separation from the context of their occurrence, the insights from the inquiry will be limited.

GENERATING RESULTS Overview

We focus on three types of output from qualitative studies——taxonomy, themes, and theory. These outputs can be helpful in a number of ways in- cluding, but not limited to, the fostering of improved measurement of multi- faceted interventions; the generation of hypotheses about causal links among service quality, cost, or access; and the revealing of insights into how the context of an events might influence various health-related outcomes.

Taxonomy

Taxonomy is a system for classifying multifaceted, complex phenomena ac- cording to common conceptual domains and dimensions. In health services research, we are often evaluating multifaceted interventions, implemented in the real world rather than controlled conditions. Qualitative methods provide a sophisticated approach to specifying the complexity rather than simple di- chotomous characterizations of interventions (i.e., treatment versus control) common in quantitative research (Sofaer 1999). Furthermore, a common lan- guage or taxonomy that distills complex interventions into their essential components is paramount to comparing alternative interventions and pro- moting clear communication. Examples of taxonomy include classification

Qualitative Data Analysis for Health Services Research 1765

 

 

systems for health maintenance organizations (Welch, Hillman, and Pauly 1990), integrated health systems (Gillies et al. 1993; Bazzoli et al. 1999), goal- setting for older adults with dementia (Bogardus, Bradley, and Tinetti 1998), and quality improvement efforts in the hospital setting (Bradley et al. 2001).

How does one move from the phase of applying the finalized code structure to generating and reporting taxonomy? If one has applied the code types as described above, then the structure of the taxonomy will mirror closely the conceptual codes and subcodes. Conceptual codes define key do- mains that characterize the phenomenon; conceptual subcodes define com- mon dimensions within those key domains. Within each dimension, there may be further subdimensions depending on the complexity of the inquiry. Importantly, taxonomies identify domains and dimensions that are broad in nature. For example, in a taxonomy classifying quality improvement (Bradley et al. 2001), we defined six domains that comprise quality improvement efforts in the hospital setting: organizational goals, administrative support, clinician leadership, performance improvement initiatives, use of data, and contextual factors. Within the domain of organizational goals, there were four dimensions (i.e., content, specificity, challenge, sharedness of the goals). For each domain and dimension, the code represents the abstract concept, not the specific statement about that concept. For instance, a domain might be ‘‘nursing lead- ership,’’ as opposed to the statement, ‘‘there is strong nursing leadership here.’’ The difference is important to recognize as taxonomies describe a discrete set of axes or domains that characterize multifaceted phenomena.

Themes

Themes are general propositions that emerge from diverse and detail-rich experiences of participants and provide recurrent and unifying ideas regard- ing the subject of inquiry. Themes typically evolve not only from the con- ceptual codes and subcodes as in the case of taxonomy but also from the relationship codes, which tag data that link concepts to each other. For ex- ample, as in a study of health services integration (Gillies et al. 1993), three concepts were identified that might form a taxonomy of integration ap- proaches: functional integration, physician integration, and clinical integra- tion. However, the study also suggests that clinical integration requires success in function and, ideally, physician integration before full clinical integration can be achieved. This latter statement might be called a theme, a statement or proposition about how health system integration proceeds. The statement does more than just identify conceptual domains; it also suggests a relationship

1766 HSR: Health Services Research 42:4 (August 2007)

 

 

among the concepts. Similarly, a study of managing a safety-net emergency department (Dohan 2002) identified themes of patients using the emergency department for relief from social, not health, problems and the extreme fi- nancial stress that is part of every day in the department. The study also revealed how these tensions were managed, i.e., by defining patients as ‘‘in- teresting cases’’ and fostering an organizational obligation to provide uncom- pensated care.

Another approach to developing themes is to conduct a comparative analysis of concepts coded in different participant groups or setting codes. The researcher retrieves data coded with both a conceptual or relationship code and with a participant characteristic code (e.g., fee-for-service Medicare versus traditional Medicare). The comparison can assess whether certain concepts, relationships among concepts, or positive/negative perspectives are more ap- parent or are experienced differently in one group than in another. These kinds of comparisons are sometimes performed informally by researchers reading and comparing statements and observations; however, formal mech- anisms including the use of truth tables (Ragin 1987, 1999) and explanatory effects matrices (Miles and Huberman 1994) to catalogue the presence of selected concepts among comparisons groups have also been implemented.

Theory

Theory emphasizes the nature of correlative or causal relationships, often delving into the systematic reasons for the events, experiences, and phenom- ena of inquiry. Theory predicts and explains phenomena (Kaplan 1964; Mer- ton 1967; Weick 1995). Data tagged by relationship codes are essential to generating and reporting theory. A comprehensive theory will integrate data tagged with conceptual codes and subcodes as well as with relationship and perspective codes. Comparative analysis about group-specific differences is also sometimes used to develop theory.

Theory development can be less bewildering with consistent cata- loguing of relationships among concepts, using the constant comparison method to generate inductively conceptual codes and subcodes as well as relationship codes. The process for developing theory is, nonetheless, diverse depending on the subject, the context, and the experience of the researcher. Illustrating theory development, a study of barriers to pediatric health care (Sobo, Seid, and Reyes Gelhard 2006), parents identified a set of six barriers that can limit access and use of critical pediatric services. The study then linked these barriers into a theory about the interaction of necessary skills and

Qualitative Data Analysis for Health Services Research 1767

 

 

prerequisites, realization of access, the site of care, and parent/patient out- comes. Through its theoretical development, the study also suggests a new paradigm for understanding the biomedical health care system, likening it to a cultural system in which parents and patients needed to learn (or be accul- turated) to function competently.

CONCLUSION

Qualitative research methodologies can generate rich information about health care including, but not limited to, patient preferences, medical decision making, culturally determined values and health beliefs, consumer satisfac- tion, health-seeking behaviors, and health disparities. Furthermore, qualitative methods can reveal critical insights to inform development, translation, and dissemination of interventions to address health system shortcomings. A clear understanding of such methodologies can help the field adopt and integrate qualitative approaches when they are appropriate. Taxonomies, themes, and theory produced with rigorous qualitative methods can be particularly useful in health services research. Taxonomies improve our description and hence, measurement and evaluation, of real-world phenomena by allowing for mul- tiple domains and dimensions of multifaceted interventions. Themes and theory guide our research to explain and predict various outcomes within diverse contexts of the health care system. In this paper, we highlight an integrated approach to qualitative data analysis, which applies the principles of inductive reasoning and the constant comparison method (Glaser and Strauss 1967) while employing predetermined code types (conceptual, rela- tionship, perspective, participant characteristics, and setting codes) to analyze data. A vast body of methodological work conducted over decades has pro- duced impressive innovation and advancement in qualitative research tech- niques. This paper has sought to translate qualitative data analysis strategies and approaches from this methodological literature to enhance their acces- sibility and use for improving health services research.

ACKNOWLEDGMENTS

Dr. Bradley is supported by the Patrick and Catherine Weldon Donaghue Medical Research Foundation and the Claude D. Pepper Older Americans

1768 HSR: Health Services Research 42:4 (August 2007)

 

 

Independence Center at Yale University. The authors are grateful to Emily Cherlin, MSW, for her research assistance on this project.

REFERENCES

Agar, M. H. 1996. ‘‘Recasting the ‘Ethno’ in ‘Ethnoepidemiology’.’’ Medical Anthro- pology 16: 391–403.

Andersen, R. M. 1995. ‘‘Revisiting the Behavioral Model and Access to Medical Care: Does It Matter?’’ Journal of Health and Social Behavior 36 (1): 1–10.

Bazzoli, G. J., S. M. Shortell, N. Dubbs, C. Chan, and P. Kralovec. 1999. ‘‘A Taxonomy of Health Networks and Systems: Bringing Order Out of Chaos.’’ Health Services Research 33 (6): 1683–717.

Bogardus, S. T. Jr., E. H. Bradley, and M. E. Tinetti. 1998. ‘‘A Taxonomy for Goal Setting in the Care of Persons with Dementia.’’ Journal of General Internal Medicine 13 (10): 675–80.

Boyatzis, R. 1998. Transforming Qualitative Information: Thematic and Code Development. Thousand Oaks, CA: Sage Publications.

Bradley, E. H., M. D. Carlson, W. T. Gallo, J. Scinto, M. K. Campbell, and H. M. Krumholz. 2005. ‘‘From Adversary to Partner: Have Quality Improvement Organizations Made the Transition?’’ Health Services Research 40 (2): 459–76.

Bradley, E. H., E. S. Holmboe, J. A. Mattera, S. A. Roumanis, M. J. Radford, and H. M. Krumholz. 2001. ‘‘A Qualitative Study of Increasing Beta-Blocker Use after Myocardial Infarction: Why Do Some Hospitals Succeed?’’ Journal of the Amer- ican Medical Association 285 (20): 2604–11.

Campbell, M. K., and F. Gregor. 2004. Mapping Social Relations: A Primer in Doing Institutional Ethnography. Walnut Creek, CA: AltaMira Press.

Crabtree, B., and W. Miller. 1999. Doing Qualitative Research, 2d Edition. Newbury Park, CA: Sage Publications.

Craigie, F. C. Jr., and R. F. III Hobbs. 2004. ‘‘Exploring the Organizational Culture of Exemplary Community Health Center Practices.’’ Family Medicine 36 (10): 733–8.

Creswell, J. W. 2003. Qualitative, Quantitative and Mixed Methods Approaches. Thousand Oaks, CA: Sage Publications.

Crosson, J. C., C. Stroebel, J. G. Scott, B. Stello, and B. F. Crabtree. 2005. ‘‘Imple- menting an Electronic Medical Record in a Family Medicine Practice: Com- munication, Decision Making, and Conflict.’’ Annals of Family Medicine 3 (4): 307–11.

Denzin, N. 1978. The Research Act: A Theoretical Introduction to Sociological Methods, 2d Edition. New York: McGraw Hill.

Devers, K. J. 1999. ‘‘How Will We Know ‘Good’ Qualitative Research When We See It? Beginning the Dialogue in Health Services Research.’’ Health Services Research 34 (5, part 2): 1153–88.

Devers, K. J., L. P. Casalino, L. S. Rudell, J. J. Stoddard, L. R. Brewster, and T. K. Lake. 2003. ‘‘Hospitals’ Negotiating Leverage with Health Plans: How and Why Has It Changed?’’ Health Services Research 38 (1, part 2): 419–46.

Qualitative Data Analysis for Health Services Research 1769

 

 

Devers, K. J., and R. M. Frankel. 2000. ‘‘Study Design in Qualitative Research——2: Sampling and Data Collection Strategies.’’ Education for Health 13 (2): 263–71.

Dohan, D. 2002. ‘‘Managing Indigent Care: A Case Study of a Safety-Net Emergency Department.’’ Health Services Research 37 (2): 361–76.

Dubin, R. 1969. Theory Building. New York: Free Press. Dy, S. M., P. Garg, D. Nyberg, P. B. Dawson, P. J. Pronovost, L. Morlock, H. Rubin,

and A. W. Wu. 2005. ‘‘Critical Pathway Effectiveness: Assessing the Impact of Patient, Hospital Care, and Pathway Characteristics Using Qualitative Com- parative Analysis.’’ Health Services Research 40 (2): 499–516.

Feldman, M. S. 1995. Strategies for Interpreting Qualitative Data. Thousand Oaks, CA: Sage Publications.

Flocke, S. A., W. L. Miller, and B. F. Crabtree. 2002. ‘‘Relationships between Physician Practice Style, Patient Satisfaction, and Attributes of Primary Care.’’ Journal of Family Practice 51 (10): 835–40.

Gallagher, T. H., A. D. Waterman, A. G. Ebers, V. J. Fraser, and W. Levinson. 2003. ‘‘Patients’ and Physicians’ Attitudes Regarding the Disclosure of Medical Er- rors.’’ Journal of the American Medical Association 289 (8): 1001–7.

Giacomini, M. K., and D. J. Cook. 2000. ‘‘Users’ Guides to the Medical Literature: XXIII. Qualitative Research in Health Care A. Are the Results of the Study Valid? Evidence-Based Medicine Working Group.’’ Journal of the American Med- ical Association 284 (3): 357–62.

Gillies, R. R., S. M. Shortell, D. A. Anderson, J. B. Mitchell, and K. L. Morgan. 1993. ‘‘Conceptualizing and Measuring Integration: Findings from the Health Systems Integration Study.’’ Hospital and Health Services Administration 38 (4): 467–89.

Glaser, B. G. 1992. Emergence V Forcing Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology Press.

Glaser, B. G., and A. L. Strauss. 1967. The Discovery of Grounded Research: Strategies for Qualitative Research. New York: Aldine De Gruyter.

Greenhalgh, T., and R. Taylor. 1997. ‘‘Papers That Go Beyond Numbers (Qualitative Research).’’ British Medical Journal 315 (7110): 740–3.

Gubrium, J. F., and J. A. Holstein. 1997. The New Language of Qualitative Method. New York: Oxford University Press.

Heath, H., and S. Cowley. 2004. ‘‘Developing a Grounded Theory Approach: A Comparison of Glaser and Strauss.’’ International Journal of Nursing Studies 41 (2): 141–50.

Janesick, V. 2003. ‘‘The Choreography of Qualitative Research: Minuets, Improvisa- tions, and Crystallization.’’ In Strategies of Qualitative Inquiry, edited by N. Denzin and Y. S. Lincoln, pp. 46–79. Thousand Oaks, CA: Sage Publications.

Kaplan, A. 1964. The Conduct of Inquiry. New York: Harper and Row. Koops, L., and R. I. Lindley. 2002. ‘‘Thrombolysis for Acute Ischaemic Stroke: Con-

sumer Involvement in Design of New Randomised Controlled Trial.’’ British Medical Journal 325 (7361): 415–7.

Krueger, R. A., and M. A. Casey. 2000. Focus Groups: A Practical Guide for Applied Research, 3d Edition. Thousand Oaks, CA: Sage Publications.

1770 HSR: Health Services Research 42:4 (August 2007)

 

 

Lincoln, Y. S., and E. G. Guba. 1985. Naturalistic Inquiry. Beverly Hills, CA: Sage Publications.

Lofland, J. 1971. Analyzing Social Settings: A Guide to Qualitative Observation and Analysis. Belmont, CA: Wadsworth.

Marshall, M. N., R. Mannion, E. Nelson, and H. T. Davies. 2003. ‘‘Managing Change in the Culture of General Practice: Qualitative Case Studies in Primary Care Trusts.’’ British Medical Journal 327 (7415): 599–602.

Mays, N., and C. Pope. 1995. ‘‘Rigour and Qualitative Research.’’ British Medical Jour- nal 311 (6997): 109–12.

McCracken, G. D. 1988. The Long Interview. Newbury Park, CA: Sage Publications. Merton, R. K. 1967. On Theoretical Sociology. New York: Free Press. Miles, M. B., and M. Huberman. 1994. Qualitative Data Analysis: A Sourcebook of New

Methods. 2d Edition. Beverly Hills, CA: Sage Publications. Morgan, D. L. 1997. Focus Groups as Qualitative Research, 2d Edition. Thousand Oaks,

CA: Sage Publications. Morse, J. M. 1994. ‘‘Designing Funded Qualitative Research.’’ In BookDesigning Funded

Qualitative Research, edited by N. Denzin and Y. S. Lincoln, pp. 220–35. Thou- sand Oaks, CA: Sage Publications.

——————. 1999. ‘‘Qualitative Methods: The State of the Art.’’ Qualitative Health Research 9 (3): 393–406.

Morse, J. M., and L. Richards. 2002. Readme First for a User’s Guide to Qualitative Methods. Thousand Oaks, CA: Sage Publications.

Patton, M. Q. 1999. ‘‘Enhancing the Quality and Credibility of Qualitative Analysis.’’ Health Services Research 34: 1189–208.

——————. 2002. Qualitative Research and Evaluation Methods, 3d Edition. Thousand Oaks, CA: Sage Publications.

Pope, C., S. Ziebland, and N. Mays. 2000. ‘‘Qualitative Research in Health Care. Analysing Qualitative Data.’’ British Medical Journal 320 (7227): 114–6.

Quinn, N. 2005. Finding Culture in Talk. New York: Palgrave MacMillan. Ragin, C. C. 1987. The Comparative Method: Moving Beyond Qualitative and Quantitative

Strategies. Berkeley, CA: University of California Press. ——————. 1999. ‘‘Using Qualitative Comparative Analysis to Study Causal Complexity.’’

Health Services Research 34 (5, part 2): 1225–39. Ryan, G. W., and H. R. Bernard. 2003. ‘‘Techniques to Identify Themes.’’ Field Methods

15 (1): 85–109. Scanlon, D. P., C. Darby, E. Rolph, and H. E. Doty. 2001. ‘‘The Role of Performance

Measures for Improving Quality in Managed Care Organizations.’’ Health Ser- vices Research 36 (3): 619–41.

Shortell, S. M. 1999. ‘‘The Emergence of Qualitative Methods in Health Services Research.’’ Health Services Research 34 (5, part 2): 1083–90.

Skocpol, T. 2003. ‘‘Double Engaged Social Science.’’ In BookDouble Engaged Social Science, edited by J. Mahoney and D. Rueschemeyer, pp. 407–28. New York: Cambridge University Press.

Qualitative Data Analysis for Health Services Research 1771

 

 

Sobo, E. J., M. Seid, and L. Reyes Gelhard. 2006. ‘‘Parent-Identified Barriers to Pedi- atric Health Care: A Process-Oriented Model.’’ Health Services Research 41 (1): 148–72.

Sofaer, S. 1999. ‘‘Qualitative Methods: What Are They and Why Use Them?’’ Health Services Research 34 (5, part 2): 1101–18.

Spradley, J. 1980. Participant Observation. New York: Holt, Rinehart, and Winston. Stapleton, H., M. Kirkham, and G. Thomas. 2002. ‘‘Qualitative Study of Evidence

Based Leaflets in Maternity Care.’’ British Medical Journal 324 (7338): 639–43. Strauss, A. L., and J. Corbin. 1990. Basics of Qualitative Research: Grounded Theory Pro-

cedures and Techniques. Newbury Park, CA: Sage Publications. ——————. 1998. Basics of Qualitative Research: Techniques and Procedures for Developing

Grounded Theory. Thousand Oaks, CA: Sage Publications. Welch, W. P., A. L. Hillman, and M. V. Pauly. 1990. ‘‘Toward New Typologies for

HMOs.’’ Milbank Quarterly 68 (2): 221–43. Yardley, L. 2000. ‘‘Dilemmas in Qualitative Health Research.’’ Psychology and Health 15:

215–28. Yin, R. K. 1994. Case Study Research: Design and Methods, 2d Edition. Thousand Oaks,

CA: Sage Publications.

1772 HSR: Health Services Research 42:4 (August 2007)

ORDER an A++ paper from our MASTERS and DOCTORATE WRITERS

Your assignment woes end here!

Who We Are
We are a professional custom writing website. If you have searched for a question and bumped into our website just know you are in the right place to get help in your coursework.

Do you handle any type of coursework?

Yes. We have posted over our previous orders to display our experience. Since we have done this question before, we can also do it for you. To make sure we do it perfectly, please fill out our Order Form. Filling the order form correctly will assist our team in referencing, specifications, and future communication.

Qualitative Research in Nursing Practice

Is it hard to Place an Order?

ORDER NOW FOR AN ORIGINAL PAPER ASSIGNMENT

1. Click on the  “Order Now” on the Main Menu and a new page will appear with an order form to be filled.

2. Fill in your paper’s requirements in the “PAPER INFORMATION” section and the system will calculate your order price/cost.

3. Fill in your paper’s academic level, deadline, and the required number of pages from the drop-down menus.

4. Click “FINAL STEP” to enter your registration details and get an account with us for record-keeping and then, click on “PROCEED TO CHECKOUT” at the bottom of the page.

100% Reliable Site. Make this your Home of Academic Papers.

SCORE A+ WITH HELP FROM OUR PROFESSIONAL WRITERS: ORDER NOW FOR AN ORIGINAL PAPER ASSIGNMENT

Qualitative Research in Nursing Practice

Always Order High-Quality Academic Papers from HERE 

5. From there, the payment sections will show, follow the guided payment process and your order will be available for our writing team to work on it. 

We will process your orders through multiple stages and checks to ensure that what we are delivering to you, in the end, is something that is precise as you envisioned it. All of our essay writing service products are 100% original, ensuring that there is no plagiarism in them. The sources are well-researched and cited so it is interesting. Our goal is to help as many students as possible with their assignments, i.e. our prices are affordable and services premium.

Looking for a Similar Assignment? Order a custom-written, plagiarism-free paper

Your assignment woes end here!

Comments are closed.